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Non-positively curved spaces and groups
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Several notions of non-positively /negatively curved spaces

Class by Ql-inv | Product | coarse Baum-Connes
Geodesic Gromov Yes No Higson-Roe, Willett
0-hyperbolic
CAT(0) C-A-T No Yes Higson-Roe, Willett
Gromov F-O
Busemann | Busemann No Yes Higson-Roe, Willett
F-O
Systolic Chepoi No No Novikov: O-P
complex J-S, H R x R? cBC: F-O
Coarsely F-O Yes Yes F-O
Convex

J-S: Januszkiewich-Swiatkowski

O-P: Osajda-Przytycki

H: Haglund
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Relations

cplt Riem. Manifold
m1=0, Ksec<—1

ﬂ

CAT(-1) =———=CAT(0) ——

cplt Riem. Manifold

m1=0, Ksec <0

k(n)-systolic
n-dim simplicial cpx

ﬂ

0-hyperbolic Busemann Systolic cpx

/

Coarsely Convex
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Coarse Cartan-Hadamard Theorem
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Some notations

» Let (X, d) be a metric space.

» An isometry «v: [a, b] — X is called a geodesic segment.

v

(X, d) is a geodesic space if any two points in X is connected
by a geodesic segment.

» For p, g € X, we denote by p;g := d(p, q) the distance
between p and q.
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Convexity of Metric

Definition
The metric d of X is convex <
Vvi: [0, a;j] — X geodesic segments (i = 1,2), Vt € [0, 1] we have

Y1(tar), v2(taz) < (1 —1t)71(0),72(0) + t1(a1),72(a2) .

Remark: X is a Busemann space < (X, d) is a geodesic space and d is convex.

1-t

71 (a1)

71(0) t 71(ta1)
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Ql-invariance

Clearly this property is NOT Quasi-Isometry-invariant.

We want to make it Ql-invariant!
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Ql-invariance: Naive ldea

Naive Idea: Replace GEODESIC by (), k)-QUASI-GEODESIC
and introduce some constants E,C.

Vvi: [0,a;] = X (A, k)-quasi-geodesic (i = 1,2), YVt € [0,1] we
have

71(ta1), v2(ta2) < (1 —1t)E~1(0),72(0) + tE~1(a1),72(a2) + C.

-+ This does not work!
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Example

» R? g Cay(ZQ, {(1,0),(0,1)}) g (Rz, l1) (h: Manhattan metric)
» For n € Z=g, define v,: R>o — R? by

0(2En) () = {Eti)_ Zv)he'lf,fj(fl )
VE > 1 fixed, we have
0(n) l 20(: ()
Vn(2En) _ %E70(2En),’y,,(2En) *
=2n—n=n—o o
(0,0) (1,0) = yn(n)
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» This does not work because
there exists MANY QUASI-GEODESICS.

GOOD

]

BAD
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» This does not work because
there exists MANY QUASI-GEODESICS.

K :

GOOD BAD

*— ®

» IDEA: Consider ONLY “GOOD" quasi-geodesics.
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» This does not work because
there exists MANY QUASI-GEODESICS.

K :

GOOD BAD

*— ®

» IDEA: Consider ONLY “GOOD" quasi-geodesics.

Theorem (Osajda-Przytycki)

Let X be a systolic complex.
Then X has a family of good geodesics.
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Coarsely Convex space

Definition
» Let X be a metric space.
»Llet A>1, k=0, E>1, and C > 0 be constants.
» Let 6: R>o — R>( be a non-decreasing function.
» Let £ be a family of (), k)-quasi-geodesic segments.

The metric space X is (\, k, E, C, 6, L)-coarsely convex, if L
satisfies the three conditions in the following slides.
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First: £-Connected

»A>1 k>0, E>1, C>=0: constants.

» L: a family of (A, k)-quasi-geodesic segments.

(i) ¥Yp,q € X, 3y € L with Domain(vy) = [0, a], s.t.
7(0) = p, ¥(a) = q.
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Second: Coarsely Convex Inequality
»A=1 k>0, E>1, C>0: constants.
» L: a family of (A, k)-quasi-geodesic segments.

(ii) Vv,n € L with Domain(vy) = [0, a], Domain(n) = [0, b].
For ue [0,a], ve [0, b], and 0 < t <1, we have

v(tu),n(tv) < (1 —t)E~(0),n(0) + tE~(u),n(v) + C.
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Third: Regularity of Parameters

» 0: R>9 — R>0: a non-decreasing function.
» L: a family of (A, k)-quasi-geodesic segments.

(iii) Vv,n € L with Domain(vy) = [0, a], Domain(n) = [0, b].
For t € [0, a] and s € [0, b], we have

[t = s < 0(~7(0),1(0) + ~(t),n(s))-
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Third: Regularity of Parameters

» 0: R>9 — R>0: a non-decreasing function.
» L: a family of (A, k)-quasi-geodesic segments.

(iii) Vv,n € L with Domain(vy) = [0, a], Domain(n) = [0, b].
For t € [0, a] and s € [0, b], we have

|t —s| < 6(7(0),n(0) + ~(¢),71(s))-
Consider the case v(0) = 1(0) = O.

v(t)

n(s)

If ~v,m are geodesic, then by triangle inequality,

[t = sl=[7(0),7(t) = 0(0),n(s)| < 7(t),n(s)
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Remark
If X is a

» Gromov hyperbolic space,
» Busemann space, or
» Systolic complex,

then we can take L a family of geodesic segments. Therefore the
third condition is satisfied.
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Coarsely Convex

In the above definition, the family £ satisfying (i), (ii), and (iii) is
called a system of good quasi-geodesic segments.

We say that a metric space X is coarsely convex if it is
(A, k, E, C,0, L)-coarsely convex for some A\, k, E, C,0, L.
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Basic properties

Proposition (Ql-invariant)

» Let X and Y be metric spaces.

» Suppose that X and Y are quasi-isometric.

Then X is coarsely convex < Y is coarsely convex.

Proposition (Stable under direct products)

» Let X and Y be metric spaces.

» Suppose that X and Y are coarsely convex

Then the direct product X x Y is coarsely convex.
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Examples

The following metric spaces are coarsely convex.
» Geodesic Gromov hyperbolic spaces.
» CAT(0)-spaces.

» Busemann spaces.
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Examples

The following metric spaces are coarsely convex.
» Geodesic Gromov hyperbolic spaces.
» CAT(0)-spaces.

» Busemann spaces.

Theorem (Osajda-Przytycki)

Systolic complexes are coarsely convex.

Theorem (Osajda-Huang, Osajda-Prytuta)

Artin groups of large type and graphical C(6) small cancellation
groups are systolic groups. i.e. Each of them acts geometrically on
a systolic complex. Especially, they are coarsely convex.
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Examples

The following metric spaces are coarsely convex.
» Geodesic Gromov hyperbolic spaces.
» CAT(0)-spaces.

» Busemann spaces.

Theorem (Osajda-Przytycki)

Systolic complexes are coarsely convex.

Theorem (Osajda-Huang, Osajda-Prytuta)

Artin groups of large type and graphical C(6) small cancellation
groups are systolic groups. i.e. Each of them acts geometrically on
a systolic complex. Especially, they are coarsely convex.

Moreover, the direct products of the above spaces and groups are
coarsely convex.
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Visual boundary

» Let X be a coarsely convex space with the system of good
quasi-geodesic segments L.

» We say that the map v: Z>o — X is L-approximatable if
I{vn} < L such that v, converges to « uniformly on
{0,1,...,1} for all | € Z>o.

» We define
0X :={v: Zzo — X : v is L-approximatable}/ ~

where v ~ n if sup{~(t),n(t) : t € Z=o} < 0.
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Gromov Product

» Choose a base point O € X.
» For v,m: Z=o — X : L-approximatable, v(0) = O, we define

(v1n) = sup { T+ 7(T),n(T) < c}.
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Gromov Product

» Choose a base point O € X.
» For v,m: Z=o — X : L-approximatable, v(0) = O, we define

(vIm) :=sup{T: Y(T).n(T) < C}.

We recall that C appears in the coarsely convex inequality:

v(tu),n(tv) < (1 —t)E~(0),n(0) + tE~(u),n(v) + C.
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Gromov Product

» Choose a base point O € X.
» For v,m: Z=o — X : L-approximatable, v(0) = O, we define

(v1n) = sup { T+ 2(T),n(T) < c}.

~
2(T)
o C
n(T)
: 1
We define p([7], [n]) := i
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Gromov Product

» Choose a base point O € X.
» For v,m: Z=o — X : L-approximatable, v(0) = O, we define

(v1n) = sup { T+ 2(T),n(T) < c}.

~
2(T)
o C
n(T)
We define p([7], [n]) := (VTTI) This is NOT metric.
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Lemma
iD > 1 s.t. forv,n,&: L-approximatable rays starting at O,

p([7], [€]) < D max{p([~], [n]), p([n], [€])}

There is a standard recipe to deform p to a METRIC.

Proposition

ddox :metric on 0X & 0 <3Je < 1s.t. V[v],[n] € 0X = LG/ ~,

zéep([ﬂ\[n])e < dox ([7)s [n]) < o]l [m])*
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Lemma
iD > 1 s.t. forv,n,&: L-approximatable rays starting at O,

p([7], [€]) < D max{p([~], [n]), p([n], [€])}

There is a standard recipe to deform p to a METRIC.

Proposition
ddox :metric on 0X & 0 <3Je < 1s.t. V[v],[n] € 0X = LG/ ~,
1 € €
sl < dox([v] [n]) < A1)
Proposition

X is proper = 0X is compact.
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Coarse Cartan-Hadamard Theorem
Let X be a proper coarsely convex space. The open cone over 0X is

00X :=[0,0) x 0X/{0} x 0X
with metric: for t,s € [0,00); x,y € 0X

tx,sy = |t —s| + min{t,s}dox(x,y)
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Coarse Cartan-Hadamard Theorem
Let X be a proper coarsely convex space. The open cone over 0X is

00X :=[0,0) x 0X/{0} x 0X
with metric: for t,s € [0,00); x,y € 0X
tx,sy = |t —s| + min{t,s}dox(x,y)

Theorem (coarse Cartan-Hadamard)

The "exponential” map

exp: O0X > t[y] — v(r(t)%) e X

is coarsely homotopy equivalent map. Especially, O0X and X are
coarsely homotopy equivalent.

Here r: [0,00) — [0,0) is a contraction such that r(t) — o0 as t — o0.
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Application
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the Coarse Baum-Connes conjecture

» Y ! proper metric space
» KX.(Y) : coarse K-homology of Y
(ex. KXo(Z") = KXo(R") = K. (R"))
» C*(Y) : a C*-algebra constructed from Y, called Roe algebra,

which is a non-equivariant analog of the reduced group C*-algebra.
Conjecture (coarse Baum-Connes)

The following coarse assembly map is an isomorphism.

fy s KXo (Y) = Ko (CH(Y)).
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Corollary (of Main theorem)

Coarse Baum-Connes conjecture holds for proper coarsely convex
spaces, especially, for locally finite systolic complexes.

Example
The above corollary covers following spaces and groups.
» Proper Geodesic Gromov hyperbolic spaces.

» Proper CAT(0)-spaces, more generally, Busemann spaces.
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Corollary (of Main theorem)

Coarse Baum-Connes conjecture holds for proper coarsely convex
spaces, especially, for locally finite systolic complexes.

Example
The above corollary covers following spaces and groups.
» Proper Geodesic Gromov hyperbolic spaces.
» Proper CAT(0)-spaces, more generally, Busemann spaces.
» Artin groups of large types (NEW!).
» graphical C(6)-small cancellation groups (NEW!).
» Direct product of above spaces and groups (NEW!).

Remark
Osajda-Przytycki showed that Novikov conjecture for systolic
groups holds.
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Proof of Corollary: Coarse Homotopy Invariance
Since exp: X — O0X is a coarsely homotopy equivalent map,
following diagram is commutative and two vertical arrows are
isomorphisms.

KX.(00X) 22 K, (C*(00X))
:lexp* o :lexp*
KX (X) — 2 Ko (C(X))
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Proof of Corollary: Coarse Homotopy Invariance

Since exp: X — O0X is a coarsely homotopy equivalent map,
following diagram is commutative and two vertical arrows are
isomorphisms.

KX (00X) L2Z K, (C*(00X))

:lexp* O = [ expy

KXa(X) —2 K, (C*(X))

Theorem (Higson-Roe)

Coarse Baum-Connes conjecture for open cones over compact
metrizable spaces (especially, ©0X ) holds.
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Proof of Corollary: Coarse Homotopy Invariance

Since exp: X — O0X is a coarsely homotopy equivalent map,
following diagram is commutative and two vertical arrows are
isomorphisms.

KX, (00X) L2 K, (C*(00X))

;lexp* o =|ew

KXa(X) —2 K. (C*(X)

le

Theorem (Higson-Roe)

Coarse Baum-Connes conjecture for open cones over compact
metrizable spaces (especially, ©0X ) holds.

QED.
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Sketch of the Proof of Main Theorem
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Sketch of the proof of Main Theorem

We follow Higson-Roe's argument (for Gromov hyperbolic space)
STEP1 Show “log” is a coarse homotopy inverse of exp.
log: Image(exp) 2 x — t[v] € 00X

where t := O,x and y € L§ s.t. (t) = x.

Remark: exp is not necessarily coarsely surjective.
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Sketch of the proof of Main Theorem

We follow Higson-Roe's argument (for Gromov hyperbolic space)
STEP1 Show “log” is a coarse homotopy inverse of exp.
log: Image(exp) 2 x — t[v] € 00X

o 0 _
where t := O,x and y € L§ s.t. (t) = x.
Remark: exp is not necessarily coarsely surjective.

STEP2 Construct an appropriate map
r: X — Image(exp)

and show this is coarsely homotopy equivalent map.

Remark

Unlike Gromov hyperbolic space, Image(exp) is not necessarily
quasi-convex subset.

30/33



Appendix
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Coarse Equivalence

Let X, Y be metric spaces and f: X — Y be a map
» f is bornologous if 3p: [0,00) — [0, ) s.t.

Vp,qe X, f(p),f(q) <p(P.q).

» f is proper if B < Y: bounded = f~1(B): bounded

» f is coarse if f is proper and bornologous.
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Coarse Equivalence
Let X, Y be metric spaces and f: X — Y be a map
» f is bornologous if 3p: [0,00) — [0, ) s.t.
Vp,qe X, f(p),f(q) <p(P.q).

» f is proper if B < Y: bounded = f~1(B): bounded

» f is coarse if f is proper and bornologous.

Let f,g: X — Y maps.
» f and g are close if 3C > 0, Vpe X, f(p),g(p) < C.

X and Y are coarsely equivalent if 3f: X — Y,3g: Y — X s.t.
1. f and g are coarse maps,
2. gofis close to idy,
3. fogisclose to idy.
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Coarsely Homotopy Equivalent
f,g: X — Y: coarse maps

Definition

f and g are coarsely homotopic if

37 = {(x,t) : 0 <t < T} © X x Ry, 3h: Z — Y coarse map,
s.t.

1. the map X 3 x — T, € R>g is bornologous,
2. h(x,0) = f(x), and
3. h(x, Tx) = g(x).
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Coarsely Homotopy Equivalent
f,g: X — Y: coarse maps
Definition
f and g are coarsely homotopic if

1Z = {(x,t): 0< t < T} © X x Rsq, 3h: Z — Y: coarse map,
s.t.

1. the map X 3 x — T, € R>g is bornologous,
2. h(x,0) = f(x), and
3. h(x, Tx) = g(x).

X and Y are coarsely homotopy equivalent if
Ff: X—>Y,dg: Y - X st

1. f and g are coarse maps,
2. gof is coarsely homotopic to idx,

3. f o g is coarsely homotopic to idy.
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